Holographic fabrication of 3D photonic crystals using silicon based reflective optics element
نویسندگان
چکیده
We present a silicon based single optical element that is able to automatically generate desired laser beam polarizations and intensities for the holographic fabrication of woodpile-type photonic crystal templates. A polydimethylsiloxane (PDMS) mold based reflective optics element is fabricated for the generation of five-beam interferences where four beams are arranged four-fold symmetrically around a central beam. Silicon chips in the inner surfaces of the mold are used to reflect the circularly or elliptically polarized beam into four side beams that are linearly polarized with electric fields normal to the incident plane, and reduce their laser intensities. Photonic crystal templates are holographically fabricated in a photosensitive polymer through this silicon-on-PDMS based single optical element and single beam based configuration. ©2012 Optical Society of America OCIS codes: (160.5298) Photonic crystals; (090.2890) Holographic optical elements; (220.3740) Lithography. References and links 1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995). 2. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of twodimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001). 3. K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005). 4. Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, and Z.-Y. Li, “All-optical logic gates based on twodimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1945. 5. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011). 6. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994). 7. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, A. Geoffrey, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000). 8. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004). 9. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000). 10. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, “Creating periodic threedimensional structures by multibeam interference of visible laser,” Chem. Mater. 14(7), 2831–2833 (2002). 11. Y. Lin, P. R. Herman, and K. Darmawikarta, “Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals,” Appl. Phys. Lett. 86(7), 071117 (2005). 12. Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, “Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal,” Opt. Express 16(12), 9165–9172 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9165. #170146 $15.00 USD Received 7 Jun 2012; revised 27 Jul 2012; accepted 4 Aug 2012; published 9 Aug 2012 (C) 2012 OSA 1 September 2012 / Vol. 2, No. 9 / OPTICAL MATERIALS EXPRESS 1236 13. D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express 16(20), 15402–15414 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-20-15402. 14. K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express 1(5), 1034–1039 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-1034. 15. Y. K. Pang, J. C. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9113–9119 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe14-20-9113. 16. D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94(23), 231116 (2009). 17. S.-G. Park, M. Miyake, S.-M. Yang, and P. V. Braun, “Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition,” Adv. Mater. 23(24), 2749–2752 (2011). 18. T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046610 (2006). 19. O. Toader, T. Y. M. Chan, and S. John, “Diamond photonic band gap synthesis by umbrella holographic lithography,” Appl. Phys. Lett. 89(10), 101117 (2006). 20. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
منابع مشابه
Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element
In this paper, we have systematically studied the holographic fabrication of three-dimensional (3D) structures using a single 3D printed reflective optical element (ROE), taking advantage of the ease of design and 3D printing of the ROE. The reflective surface was setup at non-Brewster angles to reflect both sand p-polarized beams for the interference. The wide selection of reflective surface m...
متن کاملWoodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.
This paper simulates the photonic band structure in face-centered-orthorhombic and face-centered-tetragonal woodpile-type photonic crystals and shows the fabrication feasibility of these crystals with phase mask based holographic lithography. The experimental demonstration on SU-8 photoresist indicates that a single optical element can replace a complex optical setup for the holographic fabrica...
متن کاملCore-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography.
We have fabricated diamond-like silicon photonic crystals through a sequential silica/silicon chemical vapor deposition (CVD) process from the corresponding polymer templates photopatterned by holographic lithography. Core-shell morphology is revealed due to the partial backfilling of the interstitial pores. To model the shell formation and investigate its effect to the bandgap properties, we d...
متن کاملSilicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method
A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present...
متن کاملFabrication of 3D Photonic Crystals toward Arbitrary Manipulation of Photons in Three Dimensions
The creation of large-area, unintentional-defect-free three-dimensional (3D) photonic crystals in the optical regime is a key challenge toward the realization of the arbitrary 3D manipulation of photons. In this article, we discuss an advanced fabrication method of 3D silicon photonic crystals based on the highly accurate alignment and wafer bonding of silicon-on-insulator (SOI) wafers. We intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012